Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 2.291
Filtrar
1.
BMC Bioinformatics ; 25(1): 125, 2024 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-38519883

RESUMO

In the battle of the host against lentiviral pathogenesis, the immune response is crucial. However, several questions remain unanswered about the interaction with different viruses and their influence on disease progression. The simian immunodeficiency virus (SIV) infecting nonhuman primates (NHP) is widely used as a model for the study of the human immunodeficiency virus (HIV) both because they are evolutionarily linked and because they share physiological and anatomical similarities that are largely explored to understand the disease progression. The HIHISIV database was developed to support researchers to integrate and evaluate the large number of transcriptional data associated with the presence/absence of the pathogen (SIV or HIV) and the host response (NHP and human). The datasets are composed of microarray and RNA-Seq gene expression data that were selected, curated, analyzed, enriched, and stored in a relational database. Six query templates comprise the main data analysis functions and the resulting information can be downloaded. The HIHISIV database, available at  https://hihisiv.github.io , provides accurate resources for browsing and visualizing results and for more robust analyses of pre-existing data in transcriptome repositories.


Assuntos
Infecções por HIV , Síndrome de Imunodeficiência Adquirida dos Símios , Vírus da Imunodeficiência Símia , Animais , Humanos , Vírus da Imunodeficiência Símia/genética , HIV , Síndrome de Imunodeficiência Adquirida dos Símios/genética , Progressão da Doença , Imunidade , Expressão Gênica
2.
Genome Med ; 16(1): 24, 2024 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-38317183

RESUMO

BACKGROUND: The Lentivirus human immunodeficiency virus (HIV) causes chronic inflammation and AIDS in humans, with variable rates of disease progression between individuals driven by both host and viral factors. Similarly, simian lentiviruses vary in their pathogenicity based on characteristics of both the host species and the virus strain, yet the immune underpinnings that drive differential Lentivirus pathogenicity remain incompletely understood. METHODS: We profile immune responses in a unique model of differential lentiviral pathogenicity where pig-tailed macaques are infected with highly genetically similar variants of SIV that differ in virulence. We apply longitudinal single-cell transcriptomics to this cohort, along with single-cell resolution cell-cell communication techniques, to understand the immune mechanisms underlying lentiviral pathogenicity. RESULTS: Compared to a minimally pathogenic lentiviral variant, infection with a highly pathogenic variant results in a more delayed, broad, and sustained activation of inflammatory pathways, including an extensive global interferon signature. Conversely, individual cells infected with highly pathogenic Lentivirus upregulated fewer interferon-stimulated genes at a lower magnitude, indicating that highly pathogenic Lentivirus has evolved to partially escape from interferon responses. Further, we identify CXCL10 and CXCL16 as important molecular drivers of inflammatory pathways specifically in response to highly pathogenic Lentivirus infection. Immune responses to highly pathogenic Lentivirus infection are characterized by amplifying regulatory circuits of pro-inflammatory cytokines with dense longitudinal connectivity. CONCLUSIONS: Our work presents a model of lentiviral pathogenicity where failures in early viral control mechanisms lead to delayed, sustained, and amplifying pro-inflammatory circuits, which in turn drives disease progression.


Assuntos
Infecções por Lentivirus , Síndrome de Imunodeficiência Adquirida dos Símios , Vírus da Imunodeficiência Símia , Animais , Humanos , Vírus da Imunodeficiência Símia/genética , Retroalimentação , Progressão da Doença , Imunidade , Interferons
3.
Ann Med ; 56(1): 2315224, 2024 12.
Artigo em Inglês | MEDLINE | ID: mdl-38353210

RESUMO

BACKGROUND: Human Immunodeficiency Virus (HIV)/Simian Immunodeficiency Virus (SIV) infection is associated with significant gut damage, similar to that observed in patients with inflammatory bowel disease (IBD). This pathology includes loss of epithelial integrity, microbial translocation, dysbiosis, and resultant chronic immune activation. Additionally, the levels of all-trans-retinoic acid (atRA) are dramatically attenuated. Data on the therapeutic use of anti-α4ß7 antibodies has shown promise in patients with ulcerative colitis and Crohn's disease. Recent evidence has suggested that the microbiome and short-chain fatty acid (SCFA) metabolites it generates may be critical for anti-α4ß7 efficacy and maintaining intestinal homeostasis. MATERIALS AND METHODS: To determine whether the microbiome contributes to gut homeostasis after anti-α4ß7 antibody administered to SIV-infected rhesus macaques, faecal SCFA concentrations were determined, 16S rRNA sequencing was performed, plasma viral loads were determined, plasma retinoids were measured longitudinally, and gut retinoid synthesis/response gene expression was quantified. RESULTS: Our results suggest that anti-α4ß7 antibody facilitates the return of retinoid metabolism to baseline levels after SIV infection. Furthermore, faecal SCFAs were shown to be associated with retinoid synthesis gene expression and rebound viral loads after therapy interruption. CONCLUSIONS: Taken together, these data demonstrate the therapeutic advantages of anti-α4ß7 antibody administration during HIV/SIV infection and that the efficacy of anti-α4ß7 antibody may depend on microbiome composition and SCFA generation.


Assuntos
Infecções por HIV , Vírus da Imunodeficiência Símia , Animais , Humanos , Vírus da Imunodeficiência Símia/genética , Macaca mulatta/genética , Macaca mulatta/metabolismo , RNA Ribossômico 16S/genética , Integrinas/metabolismo , Integrinas/uso terapêutico , Retinoides/uso terapêutico
4.
Sci Transl Med ; 15(726): eadi9867, 2023 12 13.
Artigo em Inglês | MEDLINE | ID: mdl-38091409

RESUMO

The rebound-competent viral reservoir, composed of a virus that is able to persist during antiretroviral therapy (ART) and mediate reactivation of systemic viral replication and rebound viremia after ART interruption (ATI), remains the biggest obstacle to treating HIV infection. A better understanding of the cellular and tissue origins and the dynamics of viral populations that initiate rebound upon ATI could help develop therapeutic strategies for reducing the rebound-competent viral reservoir. In this study, barcoded simian immunodeficiency virus (SIV), SIVmac239M, was used to infect rhesus macaques to enable monitoring of viral barcode clonotypes contributing to virus detectable in plasma after ATI. Blood and tissues from secondary lymphoid organs (spleen, mesenteric lymph nodes, and inguinal lymph nodes) and from the colon, ileum, lung, liver, and brain were analyzed using viral barcode sequencing, intact proviral DNA assay, single-cell RNA sequencing, and combined CODEX and RNAscope in situ hybridization. Four of seven animals had viral barcodes detectable by deep sequencing of plasma at necropsy, although plasma viral RNA remained below 22 copies per milliliter. Among the tissues studied, mesenteric lymph nodes, inguinal lymph nodes, and spleen contained viral barcodes detected in plasma. CD4+ T cells were the main cell type harboring viral RNA after ATI. Furthermore, T cell zones in lymphoid tissues showed higher viral RNA abundance than B cell zones for most animals. These findings are consistent with lymphoid tissues contributing to the virus present in plasma early after ATI.


Assuntos
Infecções por HIV , Síndrome de Imunodeficiência Adquirida dos Símios , Vírus da Imunodeficiência Símia , Animais , Vírus da Imunodeficiência Símia/genética , Macaca mulatta , Infecções por HIV/tratamento farmacológico , Antirretrovirais/uso terapêutico , Antirretrovirais/farmacologia , Tecido Linfoide , Replicação Viral , RNA Viral , Carga Viral , Linfócitos T CD4-Positivos
5.
mSphere ; 8(6): e0048423, 2023 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-38032220

RESUMO

IMPORTANCE: Simian immunodeficiency virus (SIV), which originated in African monkeys, crossed the species barrier into humans and ultimately gave rise to HIV and the global HIV/AIDS epidemic. While SIV infects over 40 primate species in sub-Saharan Africa, testing for RNA viruses in wild primate populations can be challenging. Optimizing field-friendly methods for assessing viral presence/abundance in non-invasively collected biological samples facilitates the study of viruses, including potentially zoonotic viruses, in wild primate populations. This study compares SIV RNA preservation and recovery from non-human primate feces stored in four different buffers. Our results will inform future fieldwork and facilitate improved approaches to characterizing prevalence, shedding, and transmission of RNA viruses like SIV in natural hosts including wild-living non-human primates.


Assuntos
Infecções por HIV , Vírus da Imunodeficiência Símia , Animais , Vírus da Imunodeficiência Símia/genética , RNA , Primatas , Fezes
6.
Microbiol Spectr ; 11(6): e0335023, 2023 Dec 12.
Artigo em Inglês | MEDLINE | ID: mdl-37921496

RESUMO

IMPORTANCE: Efficient strategies for HIV-1 cART-free virologic control are critical for ending the AIDS pandemic. The essential role of effector-memory CD8+ T cells in controlling viremia and eliminating virus-infected cells has made them a promising target for vaccine development. It has been previously reported that PD-1-based DNA vaccination was effective in inducing polyfunctional effector-memory CD8+ T cells for AIDS virus control for 2 years in rhesus monkeys. This follow-up study extends the findings and shows that a viremia-free period of over 6 years was detected in two monkeys immunized with PD-1-based DNA vaccine against pathogenic SHIVSF162P3CN infection in the absence of antiretroviral therapy. Long-term vaccine-induced memory T cell responses were detected. Our results warrant the clinical trials of PD-1-based DNA vaccines for achieving HIV-1 cART-free virologic control used either alone or in combination with other biomedical interventions.


Assuntos
Vacinas contra a AIDS , Síndrome de Imunodeficiência Adquirida dos Símios , Vírus da Imunodeficiência Símia , Vacinas de DNA , Animais , Macaca mulatta/genética , Síndrome de Imunodeficiência Adquirida dos Símios/prevenção & controle , Linfócitos T CD8-Positivos , Vírus da Imunodeficiência Símia/genética , Seguimentos , Receptor de Morte Celular Programada 1 , Vacinação , DNA , Vacinas contra a AIDS/genética
7.
Proc Natl Acad Sci U S A ; 120(43): e2313209120, 2023 Oct 24.
Artigo em Inglês | MEDLINE | ID: mdl-37844236

RESUMO

The latent reservoir for HIV-1 in resting CD4+ T cells persists despite antiretroviral therapy (ART) and precludes cure. Reservoir-targeting interventions are evaluated in ART-treated macaques infected with simian immunodeficiency virus (SIV) or simian-human immunodeficiency virus (SHIV). Efficacy is determined by reservoir measurements before and after the intervention. However, most proviruses persisting in the setting of ART are defective. In addition, intact HIV-1 and SIV genomes undergo complex, multiphasic decay observable when new infection events are blocked by ART. Intervention-induced elimination of latently infected cells must be distinguished from natural decay. Here, we address these issues for SHIV. We describe an intact proviral DNA assay that allows digital counting of SHIV genomes lacking common fatal defects. We show that intact SHIV genomes in circulating CD4+ T cells undergo biphasic decay during the first year of ART, with a rapid first phase (t1/2 = 30.1 d) and a slower second phase (t1/2 = 8.1 mo) that is still more rapid that the slow decay observed in people with HIV-1 on long-term ART (t1/2 = 3.7 y). In SHIV models, most interventions are tested during 2nd phase decay. Natural 2nd phase decay must be considered in evaluating interventions as most infected cells present at this time do not become part of the stable reservoir. In addition, for interventions tested during 2nd phase decay, a caveat is that the intervention may not be equally effective in people with HIV on long-term ART whose reservoirs are dominated by latently infected cells with a slower decay rate.


Assuntos
Infecções por HIV , HIV-1 , Síndrome de Imunodeficiência Adquirida dos Símios , Vírus da Imunodeficiência Símia , Animais , Humanos , Vírus da Imunodeficiência Símia/genética , Síndrome de Imunodeficiência Adquirida dos Símios/tratamento farmacológico , Antirretrovirais/uso terapêutico , Antirretrovirais/farmacologia , Replicação Viral , Macaca mulatta , Infecções por HIV/tratamento farmacológico , Provírus/genética , HIV-1/genética , Linfócitos T CD4-Positivos , Carga Viral
8.
Retrovirology ; 20(1): 15, 2023 08 22.
Artigo em Inglês | MEDLINE | ID: mdl-37608289

RESUMO

Human immunodeficiency virus (HIV) and other lentiviruses adapt to new hosts by evolving to evade host-specific innate immune proteins that differ in sequence and often viral recognition between host species. Understanding how these host antiviral proteins, called restriction factors, constrain lentivirus replication and transmission is key to understanding the emergence of pandemic viruses like HIV-1. Human TRIM34, a paralogue of the well-characterized lentiviral restriction factor TRIM5α, was previously identified by our lab via CRISPR-Cas9 screening as a restriction factor of certain HIV and SIV capsids. Here, we show that diverse primate TRIM34 orthologues from non-human primates can restrict a range of Simian Immunodeficiency Virus (SIV) capsids including SIVAGM-SAB, SIVAGM-TAN and SIVMAC capsids, which infect sabaeus monkeys, tantalus monkeys, and rhesus macaques, respectively. All primate TRIM34 orthologues tested, regardless of species of origin, were able to restrict this same subset of viral capsids. However, in all cases, this restriction also required the presence of TRIM5α. We demonstrate that TRIM5α is necessary, but not sufficient, for restriction of these capsids, and that human TRIM5α functionally interacts with TRIM34 from different species. Finally, we find that both the TRIM5α SPRY v1 loop and the TRIM34 SPRY domain are essential for TRIM34-mediated restriction. These data support a model in which TRIM34 is a broadly-conserved primate lentiviral restriction factor that acts in tandem with TRIM5α, such that together, these proteins can restrict capsids that neither can restrict alone.


Assuntos
Infecções por HIV , Vírus da Imunodeficiência Símia , Animais , Macaca mulatta , Lentivirus , Vírus da Imunodeficiência Símia/genética , Antivirais
9.
Retrovirology ; 20(1): 13, 2023 08 10.
Artigo em Inglês | MEDLINE | ID: mdl-37563642

RESUMO

A biologically relevant non-human primate (NHP) model of HIV persistence in the central nervous system (CNS) is necessary. Most current NHP/SIV models of HIV infection fail to recapitulate viral persistence in the CNS without encephalitis or fail to employ viruses that authentically represent the ongoing HIV-1 pandemic. Here, we demonstrate viral replication in the brain and neuropathogenesis after combination antiretroviral therapy (ART) in rhesus macaques (RMs) using novel macrophage-tropic transmitted/founder (TF) simian-human immunodeficiency virus SHIV.D.191,859 (SHIV.D). Quantitative immunohistochemistry (IHC) and DNA/RNAscope in situ hybridization (ISH) were performed on three brain regions from six SHIV.D-infected RMs; two necropsied while viremic, two during analytical treatment interruptions, and two on suppressive ART. We demonstrated myeloid-mediated neuroinflammation, viral replication, and proviral DNA in the brain in all animals. These results demonstrate that TF SHIV.D models native HIV-1 CNS replication, pathogenesis, and persistence on ART in rhesus macaques.


Assuntos
Infecções por HIV , HIV-1 , Síndrome de Imunodeficiência Adquirida dos Símios , Vírus da Imunodeficiência Símia , Animais , Humanos , Macaca mulatta , Síndrome de Imunodeficiência Adquirida dos Símios/tratamento farmacológico , Infecções por HIV/tratamento farmacológico , Terapia Antirretroviral de Alta Atividade , Vírus da Imunodeficiência Símia/genética , Encéfalo , HIV-1/genética , Replicação Viral/fisiologia , Carga Viral
10.
Proc Natl Acad Sci U S A ; 120(29): e2305896120, 2023 07 18.
Artigo em Inglês | MEDLINE | ID: mdl-37428933

RESUMO

Vaccines have played a fundamental role in the control of infectious diseases. We previously developed a messenger RNA (mRNA) vaccine against HIV-1 that forms virus-like particles (VLPs) through coexpression of the viral envelope with Gag. Here, we applied the same principle to the design of a VLP-forming mRNA vaccine against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). To promote cognate interaction with simian immunodeficiency virus (SIV) Gag, we engineered different chimeric proteins encompassing the ectodomain and the transmembrane region of the SARS-CoV-2 Spike protein from the Wuhan-Hu-1 strain fused to the gp41 cytoplasmic tail of either HIV-1 (strain WITO) or SIV (strain mac239) with or without a partial truncation at amino acid 745 to enhance membrane expression. Upon cotransfection with SIV gag mRNA, the Spike-SIVCT.745 (SSt) chimera yielded the highest level of cell-surface expression and extracellular VLP release. Immunization of BALB/c mice with SSt+gag mRNA at 0, 4, and 16 wk induced higher titers of Spike-binding and autologous neutralizing antibodies at all time points compared to SSt mRNA alone. Furthermore, mice immunized with SSt+gag mRNA developed neutralizing antibodies effective against different variants of concern. These data demonstrate that the Gag/VLP mRNA platform can be successfully applied to vaccines against different agents for the prevention of infectious diseases of global relevance.


Assuntos
COVID-19 , Vírus da Imunodeficiência Símia , Humanos , Animais , Camundongos , Vacinas contra COVID-19/genética , Anticorpos Antivirais , SARS-CoV-2/genética , COVID-19/prevenção & controle , Anticorpos Neutralizantes , Glicoproteína da Espícula de Coronavírus/genética , Vírus da Imunodeficiência Símia/genética
11.
J Med Primatol ; 52(4): 259-271, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37277966

RESUMO

BACKGROUND: Simian immunodeficiency virus (SIV) infection in rhesus macaques (Macaca mulatta) can lead to the development of SIV encephalitis (SIVE), which is closely related to human immunodeficiency virus (HIV)-induced dementia. METHODS: This was done by analyzing SIV and SIVE encephalitis in infected M. mulatta hippocampus samples from two microarray data sets, identifying two groups of common differentially expressed genes and predicting associated protein interactions. RESULTS: We found that eight genes-MX1, B2M, IFIT1, TYMP, STAT1, IFI44, ISG15, and IFI27-affected the negative regulation of biological processes, hepatitis C and Epstein-Barr viral infection, and the toll-like receptor signaling pathway, which mediate the development of encephalitis after SIV infection. In particular, STAT1 played a central role in the process by regulating biopathological changes during the development of SIVE. CONCLUSION: These findings provide a new theoretical basis for the treatment of encephalopathy after HIV infection by targeting STAT1.


Assuntos
Encefalite , Infecções por HIV , Síndrome de Imunodeficiência Adquirida dos Símios , Vírus da Imunodeficiência Símia , Humanos , Animais , Vírus da Imunodeficiência Símia/genética , Macaca mulatta , Carga Viral
12.
Mol Biol Evol ; 40(5)2023 05 02.
Artigo em Inglês | MEDLINE | ID: mdl-37134013

RESUMO

HIV-1 is a highly host-specific retrovirus that infects humans but not most nonhuman primates. Thus, the lack of a suitable primate model that can be directly infected with HIV-1 hinders HIV-1/AIDS research. In the previous study, we have found that the northern pig-tailed macaques (NPMs) are susceptible to HIV-1 infection but show a nonpathogenic state. In this study, to understand this macaque-HIV-1 interaction, we assembled a de novo genome and longitudinal transcriptome for this species during the course of HIV-1 infection. Using comparative genomic analysis, a positively selected gene, Toll-like receptor 8, was identified with a weak ability to induce an inflammatory response in this macaque. In addition, an interferon-stimulated gene, interferon alpha inducible protein 27, was upregulated in acute HIV-1 infection and acquired an enhanced ability to inhibit HIV-1 replication compared with its human ortholog. These findings coincide with the observation of persistently downregulated immune activation and low viral replication and can partially explain the AIDS-free state in this macaque following HIV-1 infection. This study identified a number of unexplored host genes that may hamper HIV-1 replication and pathogenicity in NPMs and provided new insights into the host defense mechanisms in cross-species infection of HIV-1. This work will facilitate the adoption of NPM as a feasible animal model for HIV-1/AIDS research.


Assuntos
Infecções por HIV , HIV-1 , Vírus da Imunodeficiência Símia , Animais , Humanos , Macaca nemestrina , HIV-1/genética , Genômica , Vírus da Imunodeficiência Símia/genética
13.
AIDS Patient Care STDS ; 37(6): 284-296, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-37184898

RESUMO

Acquired immunodeficiency syndrome (AIDS), caused by the human immunodeficiency virus (HIV), has become a heavy burden of disease and an important public health problem in the world. Although current antiretroviral therapy (ART) is effective at suppressing the virus in the blood, HIV still remains in two different types of reservoirs-the latently infected cells (represented by CD4+ T cells) and the tissues containing those cells, which may block access to ART, HIV-neutralizing antibodies and latency-reversing agents. The latter is the focus of our review, as blood viral load drops below detectable levels after ART, a deeper and more systematic understanding of the HIV tissue reservoirs is imperative. In this review, we take the lymphoid system (including lymph nodes, gut-associated lymphoid tissue, spleen and bone marrow), nervous system, respiratory system, reproductive system (divided into male and female), urinary system as the order, focusing on the particularity and importance of each tissue in HIV infection, the infection target cell types of each tissue, the specific infection situation of each tissue quantified by HIV DNA or HIV RNA and the evidence of compartmentalization and pharmacokinetics. In summary, we found that the present state of HIV in different tissues has both similarities and differences. In the future, the therapeutic principle we need to follow is to respect the discrepancy on the basis of grasping the commonality. The measures taken to completely eliminate the virus in the whole body cannot be generalized. It is necessary to formulate personalized treatment strategies according to the different characteristics of the HIV in the various tissues, so as to realize the prospect of curing AIDS as soon as possible.


Assuntos
Síndrome de Imunodeficiência Adquirida , Infecções por HIV , Síndrome de Imunodeficiência Adquirida dos Símios , Vírus da Imunodeficiência Símia , Animais , Masculino , Feminino , Humanos , Síndrome de Imunodeficiência Adquirida dos Símios/tratamento farmacológico , Infecções por HIV/tratamento farmacológico , Vírus da Imunodeficiência Símia/genética , HIV , Síndrome de Imunodeficiência Adquirida/tratamento farmacológico , Latência Viral/fisiologia , Replicação Viral , Macaca mulatta , Antirretrovirais/uso terapêutico , Linfócitos T CD4-Positivos , Carga Viral
14.
J Virol ; 97(6): e0176022, 2023 06 29.
Artigo em Inglês | MEDLINE | ID: mdl-37223960

RESUMO

CD4+ T follicular helper (TFH) cells are key targets for human immunodeficiency virus (HIV)/simian immunodeficiency virus (SIV) replication and contribute to the virus reservoir under antiretroviral therapy (ART). Here, we describe a novel CD3+ CD20+ double-positive (DP) lymphocyte subset, resident in secondary lymphoid organs of humans and rhesus macaques (RMs), that appear predominantly after membrane exchange between TFH and B cells. DP lymphocytes are enriched in cells displaying a TFH phenotype (CD4+ PD1hi CXCR5hi), function (interleukin 21 positive [IL-21+]), and gene expression profile. Importantly, expression of CD40L upon brief in vitro mitogen stimulation identifies, by specific gene-expression signatures, DP cells of TFH-cell origin versus those of B-cell origin. Analysis of 56 RMs showed that DP cells (i) significantly increase following SIV infection, (ii) are reduced after 12 months of ART in comparison to pre-ART levels, and (iii) expand to a significantly higher frequency following ART interruption. Quantification of total SIV-gag DNA on sorted DP cells from chronically infected RMs showed that these cells are susceptible to SIV infection. These data reinforce earlier observations that CD20+ T cells are infected and expanded by HIV infection, while suggesting that these cells phenotypically overlap activated CD4+ TFH cells that acquire CD20 expression via trogocytosis and can be targeted as part of therapeutic strategies aimed at HIV remission. IMPORTANCE The HIV reservoir is largely composed of latently infected memory CD4+ T cells that persist during antiretroviral therapy and constitute a major barrier toward HIV eradication. In particular, CD4+ T follicular helper cells have been demonstrated as key targets for viral replication and persistence under ART. In lymph nodes from HIV-infected humans and SIV-infected rhesus macaques, we show that CD3+ CD20+ lymphocytes emerge after membrane exchange between T cells and B cells and are enriched in phenotypic, functional, and gene expression profiles found in T follicular helper cells. Furthermore, in SIV-infected rhesus macaques, these cells expand following experimental infection and after interruption of ART and harbor SIV DNA at levels similar to those found in CD4+ T cells; thus, CD3+ CD20+ lymphocytes are susceptible to SIV infection and can contribute to SIV persistence.


Assuntos
Síndrome de Imunodeficiência Adquirida dos Símios , Vírus da Imunodeficiência Símia , Células T Auxiliares Foliculares , Animais , Humanos , Linfócitos T CD4-Positivos/imunologia , Linfócitos T CD4-Positivos/virologia , Infecções por HIV/imunologia , Infecções por HIV/virologia , Linfonodos/citologia , Macaca mulatta , Síndrome de Imunodeficiência Adquirida dos Símios/imunologia , Síndrome de Imunodeficiência Adquirida dos Símios/virologia , Vírus da Imunodeficiência Símia/genética , Células T Auxiliares Foliculares/imunologia , Células T Auxiliares Foliculares/virologia , Linfócitos B/imunologia , Linfócitos B/virologia , Ligante de CD40/genética , Expressão Gênica/imunologia , DNA Viral/metabolismo , Tecido Linfoide/citologia , Tecido Linfoide/imunologia , Tecido Linfoide/virologia
15.
PLoS Pathog ; 19(3): e1011207, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36996029

RESUMO

Transmissions of simian viruses to humans has originated the different groups of HIV-1. We recently identified a functional motif (CLA), in the C-terminal domain of the integrase, essential for integration in HIV-1 group M. Here, we found that the motif is instead dispensable in group O isolates, because of the presence, in the N-terminal domain of HIV-1 O of a specific sequence, Q7G27P41H44, that we define as the NOG motif. Alterations of reverse transcription and of 3' processing observed by mutating the CLA motif of IN M are fully rescued to wt levels by inserting the sequence of the NOG motif in the N-ter of the protein. These results indicate that the two motifs (CLA and NOG) functionally complement each other and a working model accounting for these observations is proposed. The establishment of these two alternative motifs seems to be due to the different phylogenetic origin and history of these two groups. Indeed, the NOG motif is already present in the ancestor of group O (SIVgor) while it is absent from SIVcpzPtt, the ancestor of group M. The CLA motif, instead, seems to have emerged after SIVcpzPtt has been transferred to humans, since no conservation is found at the same positions in these simian viruses. These results show the existence of two-group specific motifs in HIV-1 M and O integrases. In each group, only one of the motifs is functional, potentially leading the other motif to diverge from its original function and, in an evolutionary perspective, assist other functions of the protein, further increasing HIV genetic diversity.


Assuntos
Integrase de HIV , HIV-1 , Vírus da Imunodeficiência Símia , Humanos , Filogenia , HIV-1/genética , Vírus da Imunodeficiência Símia/genética , Integrase de HIV/genética , Integrases
16.
Nat Microbiol ; 8(5): 833-844, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36973419

RESUMO

The development of persistent cellular reservoirs of latent human immunodeficiency virus (HIV) is a critical obstacle to viral eradication since viral rebound takes place once anti-retroviral therapy (ART) is interrupted. Previous studies show that HIV persists in myeloid cells (monocytes and macrophages) in blood and tissues in virologically suppressed people with HIV (vsPWH). However, how myeloid cells contribute to the size of the HIV reservoir and what impact they have on rebound after treatment interruption remain unclear. Here we report the development of a human monocyte-derived macrophage quantitative viral outgrowth assay (MDM-QVOA) and highly sensitive T cell detection assays to confirm purity. We assess the frequency of latent HIV in monocytes using this assay in a longitudinal cohort of vsPWH (n = 10, 100% male, ART duration 5-14 yr) and find half of the participants showed latent HIV in monocytes. In some participants, these reservoirs could be detected over several years. Additionally, we assessed HIV genomes in monocytes from 30 vsPWH (27% male, ART duration 5-22 yr) utilizing a myeloid-adapted intact proviral DNA assay (IPDA) and demonstrate that intact genomes were present in 40% of the participants and higher total HIV DNA correlated with reactivatable latent reservoirs. The virus produced in the MDM-QVOA was capable of infecting bystander cells resulting in viral spread. These findings provide further evidence that myeloid cells meet the definition of a clinically relevant HIV reservoir and emphasize that myeloid reservoirs should be included in efforts towards an HIV cure.


Assuntos
Infecções por HIV , HIV-1 , Síndrome de Imunodeficiência Adquirida dos Símios , Vírus da Imunodeficiência Símia , Animais , Masculino , Humanos , Feminino , Infecções por HIV/tratamento farmacológico , Vírus da Imunodeficiência Símia/genética , Antirretrovirais/uso terapêutico , HIV-1/genética , Latência Viral , Macrófagos
17.
AIDS ; 37(5): 733-744, 2023 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-36779477

RESUMO

OBJECTIVES: Latent infection by HIV hinders viral eradication despite effective antiretroviral treatment (ART). Among proposed contributors to viral latency are cellular small RNAs that have also been proposed to shuttle between cells in extracellular vesicles. Thus, we profiled extracellular vesicle small RNAs during different infection phases to understand the potential relationship between these extracellular vesicle associated small RNAs and viral infection. DESIGN: A well characterized simian immunodeficiency virus (SIV)/macaque model of HIV was used to profile extracellular vesicle enriched blood plasma fractions harvested during preinfection, acute infection, latent infection/ART treatment, and rebound after ART interruption. METHODS: Measurement of extracellular vesicle concentration, size distribution, and morphology was complemented with qPCR array for small RNA expression, followed by individual qPCR validations. Iodixanol density gradients were used to separate extracellular vesicle subtypes and virions. RESULTS: Plasma extracellular vesicle particle counts correlated with viral load and peaked during acute infection. However, SIV gag RNA detection showed that virions did not fully explain this peak. Extracellular vesicle microRNAs miR-181a, miR-342-3p, and miR-29a decreased with SIV infection and remained downregulated in latency. Interestingly, small nuclear RNA U6 had a tight association with viral load peak. CONCLUSION: This study is the first to monitor how extracellular vesicle concentration and extracellular vesicle small RNA expression change dynamically in acute viral infection, latency, and rebound in a carefully controlled animal model. These changes may also reveal regulatory roles in retroviral infection and latency.


Assuntos
Vesículas Extracelulares , Infecções por HIV , MicroRNAs , Síndrome de Imunodeficiência Adquirida dos Símios , Vírus da Imunodeficiência Símia , Animais , Vírus da Imunodeficiência Símia/genética , Infecções por HIV/tratamento farmacológico , Síndrome de Imunodeficiência Adquirida dos Símios/tratamento farmacológico , Macaca mulatta/genética , Antirretrovirais/uso terapêutico , Antirretrovirais/farmacologia , Carga Viral , Replicação Viral
18.
Cell Host Microbe ; 31(3): 356-372.e5, 2023 03 08.
Artigo em Inglês | MEDLINE | ID: mdl-36809762

RESUMO

The decay kinetics of HIV-1-infected cells are critical to understand virus persistence. We evaluated the frequency of simian immunodeficiency virus (SIV)-infected cells for 4 years of antiretroviral therapy (ART). The intact proviral DNA assay (IPDA) and an assay for hypermutated proviruses revealed short- and long-term infected cell dynamics in macaques starting ART ∼1 year after infection. Intact SIV genomes in circulating CD4+T cells showed triphasic decay with an initial phase slower than the decay of the plasma virus, a second phase faster than the second phase decay of intact HIV-1, and a stable third phase reached after 1.6-2.9 years. Hypermutated proviruses showed bi- or mono-phasic decay, reflecting different selective pressures. Viruses replicating at ART initiation had mutations conferring antibody escape. With time on ART, viruses with fewer mutations became more prominent, reflecting decay of variants replicating at ART initiation. Collectively, these findings confirm ART efficacy and indicate that cells enter the reservoir throughout untreated infection.


Assuntos
Infecções por HIV , Síndrome de Imunodeficiência Adquirida dos Símios , Vírus da Imunodeficiência Símia , Animais , Vírus da Imunodeficiência Símia/genética , Antirretrovirais/farmacologia , Antirretrovirais/uso terapêutico , Macaca mulatta , Infecções por HIV/tratamento farmacológico , Provírus/genética , Linfócitos T CD4-Positivos , Carga Viral
19.
Mol Ther ; 31(4): 1059-1073, 2023 04 05.
Artigo em Inglês | MEDLINE | ID: mdl-36760126

RESUMO

We aim to develop an in vivo hematopoietic stem cell (HSC) gene therapy approach for persistent control/protection of HIV-1 infection based on the stable expression of a secreted decoy protein for HIV receptors CD4 and CCR5 (eCD4-Ig) from blood cells. HSCs in mice and a rhesus macaque were mobilized from the bone marrow and transduced by an intravenous injection of HSC-tropic, integrating HDAd5/35++ vectors expressing rhesus eCD4-Ig. In vivo HSC transduction/selection resulted in stable serum eCD4-Ig levels of ∼100 µg/mL (mice) and >20 µg/mL (rhesus) with half maximal inhibitory concentrations (IC50s) of 1 µg/mL measured by an HIV neutralization assay. After simian-human-immunodeficiency virus D (SHIV.D) challenge of rhesus macaques injected with HDAd-eCD4-Ig or a control HDAd5/35++ vector, peak plasma viral load levels were ∼50-fold lower in the eCD4-Ig-expressing animal. Furthermore, the viral load was lower in tissues with the highest eCD4-Ig expression, specifically the spleen and lymph nodes. SHIV.D challenge triggered a selective expansion of transduced CD4+CCR5+ cells, thereby increasing serum eCD4-Ig levels. The latter, however, broke immune tolerance and triggered anti-eCD4-Ig antibody responses, which could have contributed to the inability to eliminate SHIV.D. Our data will guide us in the improvement of the in vivo approach. Clearly, our conclusions need to be validated in larger animal cohorts.


Assuntos
Infecções por HIV , HIV-1 , Síndrome de Imunodeficiência Adquirida dos Símios , Vírus da Imunodeficiência Símia , Humanos , Animais , Camundongos , Macaca mulatta , Vírus da Imunodeficiência Símia/genética , Células-Tronco Hematopoéticas , Síndrome de Imunodeficiência Adquirida dos Símios/terapia
20.
Nat Microbiol ; 8(2): 299-308, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36690860

RESUMO

Persistence of the human immunodeficiency virus type-1 (HIV-1) latent reservoir in infected individuals remains a problem despite fully suppressive antiretroviral therapy (ART). While reservoir formation begins during acute infection, the mechanisms responsible for its establishment remain unclear. CD8+ T cells are important during the initial control of viral replication. Here we examined the effect of CD8+ T cells on formation of the latent reservoir in simian immunodeficiency virus (SIV)-infected macaques by performing experimental CD8+ depletion either before infection or before early (that is, day 14 post-infection) ART initiation. We found that CD8+ depletion resulted in slower decline of viremia, indicating that CD8+ lymphocytes reduce the average lifespan of productively infected cells during acute infection and early ART, presumably through SIV-specific cytotoxic T lymphocyte (CTL) activity. However, CD8+ depletion did not change the frequency of infected CD4+ T cells in the blood or lymph node as measured by the total cell-associated viral DNA or intact provirus DNA assay. In addition, the size of the persistent reservoir remained the same when measuring the kinetics of virus rebound after ART interruption. These data indicate that during early SIV infection, the viral reservoir that persists under ART is established largely independent of CTL control.


Assuntos
Infecções por HIV , Síndrome de Imunodeficiência Adquirida dos Símios , Vírus da Imunodeficiência Símia , Animais , Humanos , Vírus da Imunodeficiência Símia/genética , Síndrome de Imunodeficiência Adquirida dos Símios/tratamento farmacológico , Linfócitos T CD8-Positivos , Antirretrovirais/uso terapêutico , Macaca mulatta , Infecções por HIV/tratamento farmacológico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...